Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; : e202400194, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567979

RESUMO

Homopolymers of poly[N-(2-(diethylamino)ethyl) acrylamide] exhibit the ability to adsorb onto the surface of preformed or growing gold nanoparticles. The resulting hybrid materials possess a pH and thermo-sensitive nature. Consequently, their optical properties can be modulated by manipulating either the temperature or the pH. Moreover, introducing monomers based on poly(N-isopropyl acrylamide) into block or random statistical polymers enables further modulation of the thermosensitive properties. These copolymers, employed for the in-situ synthesis and/or stabilization of gold nanoparticles, lead to hybrid materials whose properties and/or particle size depend on the polymer composition and microstructure: statistical polymers emerge as superior stabilizing agents compared to their block counterparts at a constant composition.

2.
J Colloid Interface Sci ; 649: 900-908, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37390537

RESUMO

HYPOTHESIS: Hybrid polyion complexes (HPICs) obtained from the complexation in aqueous solution of a double hydrophilic block copolymer and metal ions can act as efficient precursors for the controlled synthesis of nanoparticles. In particular, the possibility to control the availability of metal ions by playing on the pH conditions is of special interest to obtain nanoparticles with controlled size and composition. EXPERIMENTS: HPICs based on Fe3+ ions were used to initiate the formation of Prussian blue (PB) nanoparticles in presence of potassium ferrocyanide in reaction media with varying pH values. FINDINGS: Complexed Fe3+ ions within HPICs can be easily released by adjusting the pH value either through the addition of a base/acid or by using a merocyanine photoacid. This allows to modulate the reactivity of Fe3+ ions with potassium ferrocyanide present in solution. As a result, PB nanoparticles with different structures (core, core-shell), composition and controlled size are obtained.

3.
Nanoscale ; 15(8): 3893-3906, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36723163

RESUMO

Because of the formation of specific antibodies to poly(ethylene glycol) (PEG) leading to life-threatening side effects, there is an increasing need to develop alternatives to treatments and diagnostic methods based on PEGylated copolymers. Block copolymers comprising a poly(N-vinyl-2-pyrrolidone) (PVP) segment can be used for the design of such vectors without any PEG block. As an example, a poly(acrylic acid)-block-poly(N-vinyl-2-pyrrolidone) (PAA-b-PVP) copolymer with controlled composition and molar mass is synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Mixing this copolymer with lanthanide cations (Gd3+, Eu3+, Y3+) leads to the formation of hybrid polyion complexes with increased stability, preventing the lanthanide cytotoxicity and in vitro cell penetration. These new nanocarriers exhibit enhanced T1 MRI contrast, when intravenously administered into mice. No leaching of gadolinium ions is detected from such hybrid complexes.


Assuntos
Meios de Contraste , Elementos da Série dos Lantanídeos , Animais , Camundongos , Polímeros , Imageamento por Ressonância Magnética , Íons
4.
Nanoscale Adv ; 2(10): 4671-4681, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36132884

RESUMO

The possibility to easily and rapidly assess the presence of Gd3+ ions in solution is of paramount importance in many domains like magnetic resonance imaging. In that context, the use of easy to implement colorimetric sensing probes based on gold nanoparticles (AuNPs) is of special interest. Herein, AuNPs functionalized with a commercial bis(p-sulfonatophenyl)phenyl phosphine ligand (BSPP) (AuNP@BSPP), bearing negatively charged sulfonate groups are used as a colorimetric sensing probe. The addition of Gd3+ ions onto these NPs was studied through UV-visible absorbance measurements, Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) and transmission electron microscopy and compared with citrate covered AuNPs. We evidenced interactions between the Gd3+ ions and their water rich coordination sphere and sulfonate groups on the surface of AuNP@BSPP via electrostatic interactions and hydrogen bonding. These interactions induce the reversible aggregation of AuNP@BSPP in the presence of concentrations of Gd3+ ions at a µM level. We took advantage of this phenomenon to develop a simple and fast bench colorimetric assay for the detection of free Gd3+ ions, based on the determination of a flocculation parameter thanks to UV-visible measurements. Limits of detection and quantification were found equal to 0.74 µM and 4.76 µM of Gd3+ ions, respectively, with a high sensitivity that competes with conventional methods used for lanthanide detection.

5.
ACS Nano ; 5(9): 7137-43, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21819134

RESUMO

High-sensitivity strain gauges based on single wires of close-packed 14 nm colloidal gold nanoparticles are obtained by a novel variant of convective self-assembly (CSA). This CSA mode named stop-and-go CSA enables the fabrication of nanoparticle wires only a few micrometers wide, separated by distances that can be easily tuned over tens to hundreds of micrometers. Nanoparticle wires are obtained in a single step by direct deposition of nanoparticles from suspensions onto flexible polyethylene terephthalate films, without any lithographic prepatterning. When connected between two electrodes, such single nanoparticle wires function as miniature resistive strain gauges. The high sensitivity, repeatability, and robustness demonstrated by these single-wire strain gauges make them extremely promising for integration into micro-electromechanical systems or for high-resolution strain mapping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA